Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(13): 3167-3181, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38525554

RESUMO

Analyzing the stable isotopic ratio of Ca offers valuable insights into a wide range of applications from climate reconstruction to bone cancer diagnosis and agricultural nutrient improvement. While the first hydration shell of Ca in solution is expected to play a major role in its fractionation properties, the coordination of Ca in water remains a subject of debate. In this work, Ca2+ in water has been modeled by means of ab initio molecular dynamics simulations using various exchange and correlation functionals and at different temperatures. Results show a significant effect of the functional on the average Ca2+ coordination, depending on its tendency to over- or understructure liquid water. The BLYP functional with Grimme-D2 correction was judged as the most accurate among those tested based on its accuracy to reproduce water structural and diffusion properties. Using this functional, the effect of temperature has been systematically investigated, focusing on means to limit the uncertainty in our assessments of the average coordination of Ca2+ ions by (1) estimating the number of water exchanges in the simulations and (2) implementing a statistical approach based on Markov chains. The findings indicate, especially, that our simulations at 300, 350, and 400 K do not yield converged results due to potential equilibration problems. These observations impose substantial constraints on the trustworthiness of numerous estimates in the existing literature that depend on trajectories with insufficient exchanges. We estimate Ca2+ coordination values of 6.8 ± 0.1, 6.8 ± 0.1, 6.7 ± 0.2, and 6.7 ± 0.2 at 600, 550, 500, and 450 K respectively. At lower temperatures (300, 350, and 400 K), while obtaining definitive values for Ca2+ coordination remains challenging, our research does indicate a potential temperature-related influence on coordination with an average Ca2+ coordination at 300 K as low as 6.2.

2.
Environ Sci Pollut Res Int ; 30(18): 53275-53294, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36853539

RESUMO

Mining areas and in particular those containing massive sulfides have left a heavy environmental legacy with soils and hydrographic networks highly contaminated with metals and metalloids as for example in the Iberian Pyrite Belt (Huelva, Spain). Here, we present new data on copper (Cu) isotopic composition of waters and solids collected along a continuum Mine (Tharsis)-River (Meca)-Lake (Sancho) in the Iberian Pyrite Belt. Our results show that the isotopic signature of pit lakes is spatially variable, but remains stable over the seasons; this signature seems to be controlled by water-rock interaction processes. The data obtained on the Meca River imply a number of attenuation processes such as decrease in the metal concentration by precipitation of secondary minerals. This is accompanied by preferential retention of the heavy isotope (65Cu) with a possibility of living organisms (e.g., algae) participation. The terminal Sancho lake demonstrated constant isotopic signature over the entire depth of the water column despite sizable variations in Cu concentrations, which can be tentatively explained by a superposition of counter-interacting biotic and abiotic processes of Cu fractionation. Overall, the understanding of the isotopic variations along the hydrological continuum is useful for a better understanding of metal element transfer within mining environments and surrounding surface waters.


Assuntos
Cobre , Poluentes Químicos da Água , Rios , Espanha , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais/análise , Isótopos , Água
3.
Environ Sci Technol ; 54(11): 6741-6750, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352767

RESUMO

The response in metal concentrations and isotopic composition to variations in photosynthetic activity of aquatic micro-organisms is crucially important for understanding the environmental controls on metal fluxes and isotope excursions. Here we studied the impacts of two successive diel cycles on physicochemical parameters, Cu and Zn concentrations, and isotopic composition in solution in the presence of mature phototrophic biofilm in a rotating annular bioreactor. The diel cycles induced fluctuations in temperature, pH, and dissolved oxygen concentration following the variation in the photosynthesis activity of the biofilm. Diel variations in metal concentrations were primarily related to the pH variation, with an increase in metal concentration in solution related to a pH decrease. For both metals, δ(66Zn) and δ(65Cu) in solution exhibited complex but reproducible diel cycles. Diel variations in photosynthetic activity led to alternatively positive and negative isotope fractionation, producing the sorption of light Zn (Δ(66Znsorbed-solution) = -0.1 ± 0.06‰) and heavy Cu isotopes (Δ(65Cusorbed-solution) = +0.17 ± 0.06‰) during the day at high pH and the excretion of lighter Zn isotopes (-0.4‰ < Δ(66Znexcreted-biofilm) < +0.14‰) and heavy Cu isotopes (Δ(65Cuexcreted-biofilm) = +0.7 ± 0.3‰) during the night at lower pH. We interpreted Zn and Cu diel cycles as a combination of a desorption of exopolymeric substance-metal complexes and a small active efflux during the night with adsorption and incorporation via an active uptake during the day. The hysteresis of metal concentration in solution over the diel cycle suggested the more important role of uptake compared to desorption and efflux from the biofilm. The phototrophic biofilm presents a non-negligible highly labile metal pool with important potential for contrasting isotopic fractionation at the diel scale.


Assuntos
Cobre , Zinco , Biofilmes , Isótopos , Compostos Orgânicos
4.
Acc Chem Res ; 50(7): 1597-1605, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28644616

RESUMO

Equilibrium fractionation of stable isotopes is critically important in fields ranging from chemistry, including medicinal chemistry, electrochemistry, geochemistry, and nuclear chemistry, to environmental science. The dearth of reliable estimates of equilibrium fractionation factors, from experiment or from natural observations, has created a need for accurate computational approaches. Because isotope fractionation is a purely quantum mechanical phenomenon, exact calculation of fractionation factors is nontrivial. Consequently, a severe approximation is often made, in which it is assumed that the system can be decomposed into a set of independent harmonic oscillators. Reliance on this often crude approximation is one of the primary reasons that theoretical prediction of isotope fractionation has lagged behind experiment. A class of problems for which one might expect the harmonic approximation to perform most poorly is the isotopic fractionation between solid and solution phases. In order to illustrate the errors associated with the harmonic approximation, we have considered the fractionation of Li isotopes between aqueous solution and phyllosilicate minerals, where we find that the harmonic approximation overestimates isotope fractionation factors by as much as 30% at 25 °C. Lithium is a particularly interesting species to examine, as natural lithium isotope signatures provide information about hydrothermal processes, carbon cycle, and regulation of the Earth's climate by continental alteration. Further, separation of lithium isotopes is of growing interest in the nuclear industry due to a need for pure 6Li and 7Li isotopes. Moving beyond the harmonic approximation entails performing exact quantum calculations, which can be achieved using the Feynman path integral formulation of quantum statistical mechanics. In the path integral approach, a system of quantum particles is represented as a set of classical-like ring-polymer chains, whose interparticle interactions are determined by the rules of quantum mechanics. Because a classical isomorphism exists between the true quantum system and the system of ring-polymers, classical-like methods can be applied. Recent developments of efficient path integral approaches for the exact calculation of isotope fractionation now allow the case of the aforementioned dissolved Li fractionation properties to be studied in detail. Applying this technique, we find that the calculations yield results that are in good agreement with both experimental data and natural observations. Importantly, path integral methods, being fully atomistic, allow us to identify the origins of anharmonic effects and to make reliable predictions at temperatures that are experimentally inaccessible yet are, nevertheless, relevant for natural phenomena.

5.
Geochem Trans ; 16: 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25931985

RESUMO

Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north- and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a δ(66)Zn value around 0.2‰ close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2‰ and bottom layers presenting significantly higher values (0.5 - 0.7‰) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution from the root uptake zone with progressively thawing soil could provoke heavy isotopes to become more available for the larch roots at the end of the vegetative season compared to the beginning of the season, because the decrease of DOC will facilitate the uptake of heavy isotope as it will be less retained in strong organic complexes.

6.
J Chem Theory Comput ; 10(4): 1440-53, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26580362

RESUMO

The problem of computing free energy differences due to isotopic substitution in chemical systems is discussed. The shift in the equilibrium properties of a system upon isotopic substitution is a purely quantum mechanical effect that can be quantified using the Feynman path integral approach. In this paper, we explore two developments that lead to a highly efficient path integral scheme. First, we employ a mass switching function inspired by the work of Ceriotti and Markland [ J. Chem. Phys. 2013, 138, 014112] that is based on the inverse square root of the mass and which leads to a perfectly constant free energy derivative with respect to the switching parameter in the harmonic limit. We show that even for anharmonic systems, this scheme allows a single-point thermodynamic integration approach to be used in the construction of free energy differences. In order to improve the efficiency of the calculations even further, however, we derive a set of free energy derivative estimators based on the fourth-order scheme of Takahashi and Imada [ J. Phys. Soc. Jpn. 1984, 53, 3765]. The Takahashi-Imada procedure generates a primitive fourth-order estimator that allows the number of imaginary time slices in the path-integral approach to be reduced substantially. However, as with all primitive estimators, its convergence is plagued by numerical noise. In order to alleviate this problem, we derive a fourth-order virial estimator based on a transferring of the difference between second- and fourth-order primitive estimators, which remains relatively constant as a function of the number of configuration samples, to the second-order virial estimator. We show that this new estimator converges as smoothly as the second-order virial estimator but requires significantly fewer imaginary time points.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...